Acta Cryst. (1990). C46, 2408-2411

# Structure of Lactitol (4-O- $\beta$ -D-Galactopyranosyl-D-glucitol) Monohydrate: an Artificial Sweetner

By JAN A. KANTERS\* AND ARIE SCHOUTEN

Laboratorium voor Kristal- en Structuurchemie, Rijksuniversiteit Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands

### AND MARK VAN BOMMEL

## Philips Research Laboratory, Eindhoven, The Netherlands

(Received 14 November 1989; accepted 7 March 1990)

Abstract.  $C_{12}H_{24}O_{11}H_2O, \quad M_r = 362.4,$ orthorhombic,  $P2_12_12_1$ , a = 7.808 (2), b = 12.685 (2), c = 15.931 (3) Å, V = 1577.9 (6) Å<sup>3</sup>, Z = 4,  $D_x = 1.525$  Mg m<sup>-3</sup>,  $\lambda$ (Mo K $\alpha$ ) = 0.71073 Å,  $\mu =$  $0.13 \text{ mm}^{-1}$ , F(000) = 776, T = 295 K, R = 0.031 for1781 unique reflections with  $I > 2.5\sigma(I)$ . The galactopyranosyl ring has the  ${}^{4}C_{1}$  chair conformation and the conformation of the bent glucitol C-atom chain is MAA. The torsion angles characterizing the conformation of the glycosidic linkage are  $-86\cdot3$  (2)° [O(5)-C(1)-O(1)-C(14)] and 116\cdot8 (2)° [C(1)-O(1)-C(14)-C(13)]. All hydroxyl groups act as donors in hydrogen bonds; three bonds are intramolecular. With the exception of O(1) of the glycosidic link which is not an acceptor and O(6) of the glucitol residue which is a double acceptor, all O atoms accept one hydrogen bond. The water molecule donates two and accepts one hydrogen bond.

Introduction. Information on the conformation of carbohydrate derivatives consisting of cyclic pyranosides and acyclic polyalcohols is very limited. So far the structures of five members of this class have been reported. Takagi & Jeffrey (1977) reported the structure of 4-O-B-D-galactopyranosyl-L-rhamnitol (GR), Gaykema & Kanters (1979) that of  $4-O-\beta-D$ glucopyranosyl-D-glucitol (cellobiotol, GG1), Lindner & Lichtenthaler (1981) that of 1-O- $\alpha$ -Dglucopyranosyl-D-mannitol (GM), Lichtenthaler & Lindner (1981) that of  $6-O-\alpha$ -D-glucopyranosyl-Dglucitol (isomaltitol, GG2) and Ohno, Hirao & Kido (1982) that of 4-O- $\alpha$ -D-glucopyranosyl-D-glucitol (maltitol, GG3). The growing interest in this type of compound is directed towards a better understanding of the influence of the pyranoside moiety on the conformation of the alditol chain and more recently at tracing the relationship between conformation and sweetening properties. The title compound, which is entirely nontoxic, is considered as a potential artificial sweetner and food additive (van Velthuijsen, 1979) with a sweetness of about 35% of that of sucrose (Saijonmaa, Heikonen, Kreula & Linko, 1978), whereas the nutritional value is much smaller than would be expected from its theoretical energy content (Hayashibara & Sugimoto, 1976). For this reason lactitol offers many promising applications for the food industry, in particular in the fields of dietetic and low-calorie foods.

In the  $\beta$ -linked pyranosylalditols GR and GG1, the torsion angles O(5)—C(1)—O(1)—C(14) about the anomeric C—O bond are -70.8 (2) and -68.2 (4)° respectively, which is close to the preferred conformation for methyl- $\beta$ -pyranosides ( $-71^{\circ}$ ) (Takagi & Jeffrey, 1977), whereas the torsion angles about the other C—O bond of the link amount to -127.8 (2) and 125.1 (3)° respectively. In  $\alpha$ -(1→4)-linked GM, GG2 and GG3, the torsion angles about the anomeric C—O bond are 74.6 (8), 77.9 (8) and 73.0 (3)° respectively. In order to elucidate the conformation about the anomeric C—O bond of  $\beta$ -(1→4)-linked pyranosylalditols we undertook the structure analysis of lactitol monohydrate.

**Experimental.** Rod-shaped crystals of the monohydrate were obtained by slow evaporation of a 50% ethanol-water solution at room temperature. The melting point of the single crystals measured on a Leitz Heiztisch microscope is 393-394 K. A crystal of dimensions  $0.2 \times 0.4 \times 0.5$  mm was used for data collection. Cell dimensions were derived from the setting angles of 24 reflections with  $15.2 \le \theta \le 19.6^{\circ}$ . Data were collected on an Enraf-Nonius CAD-4 diffractometer (Zr-filtered Mo K $\alpha$  radiation,  $\theta$ -2 $\theta$ scan). 2081 reflections were measured ( $h \ 0 \le 10, k \ 0 \le 16, l \ 0 \le 20, \theta_{max} = 27.5^{\circ}$ ) of which 1781 with  $I > 2.5\sigma(I)$  were considered observed. Two standard reflections (112 and 112) measured every hour

© 1990 International Union of Crystallography

<sup>\*</sup> To whom correspondence should be addressed.

showed insignificant variations. Intensities were corrected for Lorentz and polarization effects, but not for absorption. The structure was solved by direct methods using MULTAN78 (Main, Hull, Lessinger, Germain, Declercq & Woolfson, 1978) and refined on F by least-squares techniques with the XRAY76 (Stewart, Machin, Dickinson, Ammon, Heck & Flack, 1976) package. All H atoms were located in difference maps and included in the refinement with constant isotropic thermal parameters equal to those of the carrier atoms. Full-matrix least-squares refinement of 295 parameters including scale factor, coordinates and anisotropic thermal parameters of non-H atoms and coordinates of the H atoms converged at R = 0.031, wR = 0.035 with  $w = 1/[\sigma^2(F_0)]$  $+ 0.003F_o^2$ ], S = 1.14,  $(\Delta/\sigma)_{max} = 0.63$ . Minimum and maximum residual electron densities in the final difference Fourier map are -0.25 and  $0.31 \text{ e} \text{ Å}^{-3}$ respectively. Calculations were carried out on an in-house MicroVAX II and on the Cyber 180-855 of the Utrecht University Computer Center. The program package EUCLID (Spek, 1982) was used for the calculation of geometries and preparation of illustrations. Scattering factors for H atoms were taken from Stewart, Davidson & Simpson (1965) and for C and O atoms from Cromer & Mann (1968).

**Discussion.** The final atomic coordinates and equivalent isotropic thermal parameters of the non-H atoms are listed in Table 1.\* The conformation and atomic numbering of the title compound are shown in Fig. 1. Bond distances, angles and selected torsion angles are listed in Table 2. The C-C bond lengths are in the range 1.504(3)-1.538(3) Å and three C-C bonds of the primary alcohol groups show significant shortening. This shortening has also been observed in GG1 and GG3, and in many pyranosides (Arnott & Scott, 1972) as well as in some alditols (Kanters, Roelofsen & Smits, 1977). The C-O bonds are in the range 1.394(3)-1.452(3) Å (mean 1.426 Å). The anomeric C(1)—O(1) bond is shortened [1.394 (3) Å] as is often observed in  $\alpha$ - and  $\beta$ -pyranosides (Arnott & Scott, 1972). However, the often observed discrepancy of the endocyclic bond lengths is absent, which is in accordance with the reported minor differences of these lengths in  $\beta$ -pyranoses (Jeffrey & Takagi, 1977; Jeffrey, Pople, Binkley & Vishveshwara, 1978).

The angles in the acetal sequence, C(5)—O(5)— C(1) 111.4 (2) and O(5)—C(1)—O(1) 108.1 (2)°,

| Table       | 1. | Fractie | onal | coordi  | nates   | and  | equival  | ent |
|-------------|----|---------|------|---------|---------|------|----------|-----|
| isotropi    | ic | thermal | para | ameters | $(Å^2)$ | with | e.s.d.'s | in  |
| parentheses |    |         |      |         |         |      |          |     |

| $U_{eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$ |            |             |             |            |  |  |
|------------------------------------------------------------------------------------|------------|-------------|-------------|------------|--|--|
|                                                                                    | x          | у           | z           | $U_{eq}$   |  |  |
| O(1)                                                                               | 0.1828 (2) | 0.2727(1)   | 0.33893 (9) | 0.0187 (8) |  |  |
| O(2)                                                                               | 0.0251(2)  | 0.4672 (1)  | 0.3810 (1)  | 0.0274 (8) |  |  |
| O(3)                                                                               | 0.1549 (2) | 0.5545 (1)  | 0.5341 (1)  | 0.0287 (9) |  |  |
| O(4)                                                                               | 0.3886 (2) | 0.3968 (1)  | 0.57729 (9) | 0.0262 (9) |  |  |
| O(5)                                                                               | 0.4246 (2) | 0.3222 (1)  | 0.40908 (9) | 0.0217 (8) |  |  |
| O(6)                                                                               | 0.7824 (2) | 0.3132(1)   | 0.4052 (1)  | 0.0293 (9) |  |  |
| O(11)                                                                              | 0.6239 (2) | 0.2543 (1)  | 0.2514 (1)  | 0.0325 (9) |  |  |
| O(12)                                                                              | 0.4913 (2) | -0·0107 (1) | 0.3165 (1)  | 0.0338 (9) |  |  |
| O(13)                                                                              | 0.1651 (2) | 0.0616 (1)  | 0.3219 (1)  | 0.0304 (9) |  |  |
| O(15)                                                                              | 0.0885 (2) | 0.1736 (1)  | 0.12805 (9) | 0.0308 (9) |  |  |
| O(16)                                                                              | -0.1485(2) | 0.3468(1)   | 0.1420 (1)  | 0.0275 (9) |  |  |
| O(111)                                                                             | 0.3609 (3) | 0.2349 (1)  | 0.0237 (1)  | 0.053 (1)  |  |  |
| C(1)                                                                               | 0.2765 (3) | 0.3598 (2)  | 0.3663 (1)  | 0.0190 (9) |  |  |
| C(2)                                                                               | 0.1629 (3) | 0.4212 (2)  | 0.4269 (1)  | 0.020 (1)  |  |  |
| C(3)                                                                               | 0.2611 (3) | 0.5088 (2)  | 0.4715 (1)  | 0.0212 (9) |  |  |
| C(4)                                                                               | 0.4271 (3) | 0.4665 (2)  | 0.5088 (1)  | 0.021 (1)  |  |  |
| C(5)                                                                               | 0.5255 (3) | 0.4072 (2)  | 0.4408(1)   | 0.021 (1)  |  |  |
| C(6)                                                                               | 0.6904 (3) | 0.3613 (2)  | 0.4731 (1)  | 0.025 (1)  |  |  |
| C(11)                                                                              | 0.6086 (3) | 0.1428 (2)  | 0.2535 (2)  | 0.032 (1)  |  |  |
| C(12)                                                                              | 0.4676 (3) | 0.1008 (2)  | 0.3093 (1)  | 0.023 (1)  |  |  |
| C(13)                                                                              | 0.2893 (3) | 0.1136 (2)  | 0.2718 (1)  | 0.0196 (9) |  |  |
| C(14)                                                                              | 0.2273 (3) | 0.2262 (2)  | 0.2586 (1)  | 0.0180 (9) |  |  |
| C(15)                                                                              | 0.0627 (3) | 0.2279 (2)  | 0.2056 (1)  | 0.0206 (9) |  |  |
| C(16)                                                                              | 0.0127 (3) | 0.3402 (2)  | 0.1843 (1)  | 0.024 (1)  |  |  |



Fig. 1. Perspective view of the conformation with atom numbering.

compare well with the average values of 111.5 and  $107.4^{\circ}$  respectively found in  $12\beta$ -pyranosides (Jeffrey et al., 1978). The C-C-C angles are in the range  $108.9(2)-116.4(2)^{\circ}$  (average  $111.9^{\circ}$ ); the C-C-O angles vary from 104.8(2) to  $115.2(2)^{\circ}$  (average  $109.2^{\circ}$ ). The glycosidic angle C(1)-O(1)-C(14)  $[118.2 (2)^{\circ}]$  is larger than the corresponding angles in GG1  $[115.4 (3)^{\circ}]$  and GR  $[115.8 (1)^{\circ}]$  and also outside the range of 115.8–117.1° reported for six  $\beta$ -(1 $\rightarrow$ 4)-linked disaccharides (Hirotsu & Shimada. 1974).

The endocyclic torsion angles are in the range  $49.9(2)-65.7(2)^{\circ}$  which agrees well with the range of 52·4 (1)-65·3 (1)° observed in  $\beta$ -D-galactose (Longchambon, Ohanessian, Avenel & Neuman,

<sup>\*</sup> Lists of structure factors, anisotropic thermal parameters of non-H atoms, coordinates of H atoms and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53138 (16 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

| Table   | 2.   | Bond   | distance  | s (Å), | bond     | angles  | (°)   | and  |
|---------|------|--------|-----------|--------|----------|---------|-------|------|
| selecte | ed t | orsion | angles (° | ) with | e.s.d.'s | in pare | enthe | eses |

| O(1) - C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.394 (3)          | O(16)-C(16)           | 1.430 (3)                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|-------------------------------------------|
| O(1) - C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.452 (3)          | C(1) - C(2)           | 1.525 (3)                                 |
| O(2) - C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.425 (3)          | C(2) - C(3)           | 1.525 (3)                                 |
| O(3) - C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.421 (3)          | C(3)-C(4)             | 1.524 (3)                                 |
| O(4) - C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.436 (3)          | C(4)-C(5)             | 1.527 (3)                                 |
| O(5) - C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.425 (3)          | C(5)-C(6)             | 1.504 (3)                                 |
| O(5)-C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.427 (3)          | C(11) - C(12)         | 1.513 (3)                                 |
| O(6)-C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.434 (3)          | C(12) - C(13)         | 1.523 (3)                                 |
| O(11) - C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.419 (3)          | C(13)-C(14)           | 1.523 (3)                                 |
| O(12) - C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.431 (3)          | C(14) - C(15)         | 1.538 (3)                                 |
| O(13)-C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.419 (3)          | C(15)-C(16)           | 1.517 (3)                                 |
| O(15)-C(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.429 (3)          |                       | ~ /                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                       |                                           |
| C(1)-O(5)-C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 111.4 (2)          | C(4)-C(5)-C(6         | 5) 112·2 (2)                              |
| C(1)-O(1)-C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 118-2 (2)          | O(6)-C(6)-C(5         | 5) 109.6 (2)                              |
| O(1)-C(1)-O(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 108.1 (2)          | O(11)-C(11)-C         | C(12) 115·2 (2)                           |
| O(1) - C(1) - C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 107.3 (2)          | O(12)-C(12)-C         | C(11) 107.5 (2)                           |
| O(5) - C(1) - C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.9 (2)          | O(12)-C(12)-C         | C(13) 104-8 (2)                           |
| O(2) - C(2) - C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 108-9 (2)          | C(11)-C(12)-C         | C(13) 113·4 (2)                           |
| O(2) - C(2) - C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 108.7 (2)          | O(13)-C(13)-C         | C(12) 110.8 (2)                           |
| C(1)-C(2)-C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 112.0 (2)          | O(13)-C(13)-C         | C(14) 107·3 (2)                           |
| O(3)-C(3)-C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 109.3 (2)          | C(12)-C(13)-C         | C(14) 116·4 (2)                           |
| O(3)-C(3)-C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 111-4 (2)          | O(1)-C(14)-C          | (13) 109.6 (2)                            |
| C(2) - C(3) - C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110.7 (2)          | O(1)-C(14)-C          | (15) 106-2 (2)                            |
| O(4) - C(4) - C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.6 (2)          | C(13)-C(14)-C         | C(15) 110·8 (2)                           |
| O(4) - C(4) - C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110.0 (2)          | O(15)-C(15)-C         | C(14) 110.5 (2)                           |
| C(3) - C(4) - C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 108.9 (2)          | O(15)-C(15)-C         | C(16) 107·2 (2)                           |
| O(5) - C(5) - C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110-2 (2)          | C(14)-C(15)-C         | C(16) 110·6 (2)                           |
| O(5) - C(5) - C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 107.5 (2)          | O(16)-C(16)-C         | C(15) 112·8 (2)                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                       |                                           |
| C(14) - O(1) - C(1) - | -86.3(2)           | O(11)-C(11)-C(1       | 2)—O(12) -169·1 (2)                       |
| C(1) - O(1) - C(14) - C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(13) = [16.8 (2)] | O(12) - C(12) - C(1)  | 3)-O(13) 55-9 (2)                         |
| C(17) - C(12) - C(13) - C(14) - C(14 |                    | O(13) - O(13) - O(1)  | 4) - 0(1) = 50.7(2)<br>- 0(15) = 174.0(2) |
| C(13) - C(14) - C(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -C(16) = 173.6(2)  | 0(15) - C(15) - C(15) | 6 - O(16) = 65.2 (2)                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ( · · · · · · (-)  |                       | -,,                                       |

1975). The Cremer & Pople (1975) puckering parameters  $\theta$  and  $\varphi$  are 6.6 (2) and 327.0 (2)° respectively, which indicates a weakly distorted  ${}^{4}C_{1}$  chair conformation. The exocyclic torsion angles are close to the ideal values of 60 or 180°, the mean deviation amounts to 5.2°. The conformation of the exocyclic C(6)—O(6) bond is *gauche-trans* as in  $\beta$ -D-galactose and the majority of galactosylpyranosides (Longchambon *et al.*, 1975).

The glucitol fragment has a non-planar, bent  $MAA^*$  C-chain conformation which can be derived from the planar chain by a 120° rotation about C(12)—C(13), thus avoiding the unfavourable conformation with parallel C(12)—O(12)/C(14)—O(1) bonds (Jeffrey & Kim, 1970). This MAA conformation was also found in the A form of D-glucitol (Park, Jeffrey & Hamilton, 1971), in the D-glucitolpyridine complex (Kim, Jeffrey & Rosenstein, 1971) and in isomaltitol (GG2) (Lichtenthaler & Lindner, 1981), whereas cellobiotol (GG1) (Gaykema & Kanters, 1979) has the unfavourable  $MAP^*$  conformation with almost parallel C(13)—O(13)/C(15)— C(16) bonds. Interestingly, the orientation of the terminal C—O bonds with respect to the adjacent

#### Table 3. Geometry of hydrogen bonds

|                 | <u>о_</u> н | НО       | 00        | 0_10    | Summater  |
|-----------------|-------------|----------|-----------|---------|-----------|
|                 |             | (Å)      | (Å)       | 0-n0    | Symmetry  |
|                 | (1)         | (n)      | (n)       | U U     | operation |
| O(2)—H…O(6)     | 0.83 (2)    | 1.96 (2) | 2.749 (2) | 158 (2) | 455.1     |
| O(3)—H…O(111)   | 0.81 (2)    | 1.87 (2) | 2.679 (2) | 173 (2) | 565.4     |
| O(4)—H…O(13)    | 0.78 (2)    | 2.00 (2) | 2.741 (2) | 161 (2) | 556.2     |
| O(6)H…O(4)      | 0.79 (2)    | 2.03 (2) | 2.803 (2) | 165 (2) | 556.2     |
| O(11)—H…O(5)    | 0.86 (2)    | 2.50 (2) | 3.078 (2) | 125 (2) | 555.1     |
| O(11)—H…O(6)    | 0.86 (2)    | 2.02 (2) | 2.846 (2) | 159 (2) | 555.1     |
| O(12)—H…O(3)    | 0.85 (2)    | 1.91 (2) | 2.758 (2) | 179 (3) | 556.2     |
| O(13)—H…O(16)   | 0.74 (2)    | 2.11 (2) | 2.787 (2) | 152 (2) | 545.3     |
| O(13)—H…O(12)   | 0.74 (2)    | 2.34 (2) | 2.708 (2) | 112 (2) | 555.1     |
| O(15)H…O(2)     | 0.85 (2)    | 1.95 (2) | 2.768 (2) | 163 (2) | 545.3     |
| O(16)—H…O(11)   | 0.83 (2)    | 1.93 (2) | 2.752 (2) | 173 (2) | 455.1     |
| O(111)—H…O(16)  | 0.81 (3)    | 2.02 (3) | 2.837 (2) | 178 (3) | 555.2     |
| O(111)—H'…O(15) | 0.87 (3)    | 1.96 (3) | 2.810 (3) | 164 (2) | \$55.1    |
|                 |             |          |           |         |           |

\* The symmetry operation is performed on the acceptor O atom. The first set of numbers specifies the lattice translations, e.g. 456.4 is -a+c from 555.4. The last digit indicates one of the following symmetry operations: (1) x, y, z; (2)  $\frac{1}{2} + x$ ,  $\frac{1}{2} - y$ , -z; (3) -x,  $\frac{1}{2} + y$ ,  $\frac{1}{2} - z$ ; (4)  $\frac{1}{2} - x$ , -y,  $\frac{1}{2} + z$ . The symmetry operation 555.1 is assigned to the donor OH groups.

C-C bonds of the two glucitols and the three pyranosylglucitols is variable. In GG1, GG2 and D-glucitol the orientations are both extended, in GG3 extended and bent respectively, in the Dglucitol-pyridine complex both bent, and in the title compound bent and extended respectively. As has already been pointed out by Jeffrey & Kim (1970), it is reasonable to assume that these differences are a result of intermolecular forces in the crystal. However, intramolecular interactions may also be operative, as is exemplified by the formation in the title compound and also in GG1 of an intramolecular hydrogen bond  $[O(11)-H\cdots O(6)$  and  $O(6)-H\cdots$ O(11) respectively] made possible by the bent and extended orientations respectively of the C(11)-O(11) bond.

The torsional angles characterizing the glycosidic link  $\varphi_1$  [O(5)—C(1)—O(1)—C(14)] and  $\varphi_2$  [C(1)— O(1)—C(14)—C(13)] are  $-86\cdot3$  (2) and  $116\cdot8$  (2)° respectively. The angle  $\varphi_1$  is very close to the average value of  $-84\cdot9^\circ$  observed in 14 disaccharides having  $\beta$ -(1→x) glycosidic linkages (Ohanessian, Avenel, Neuman & Gillier-Pandraud, 1980). For the pyranosylalditols GG1 and GR the  $\varphi_1$  angles are  $-68\cdot2$  (4) and  $-70\cdot8$  (2)° respectively. As in  $\beta$ -(1→4)-linked disaccharides and the pyranosylalditols GG1 and GR,  $\varphi_2$  in the title compound [116·8 (2)°] approaches the value corresponding to an eclipsed conformation about O(1)—C(14).

All 11 potential hydrogen-bond donors are involved in a three-dimensional system of 13 hydrogen bonds (Table 3). With the exception of glycosidic O(1) which is not an acceptor and O(6) which is a double acceptor, all O atoms act as a single acceptor. Two donors O(11)—H and O(13)—H participate in asymmetric bifurcated hydrogen bonds, the former donor being connected to two intramolecular acceptors. These four-atom hydrogen-bond configurations are planar as follows from the sum of angles

<sup>\*</sup> M, A and P refer to the conformation about C—C bonds; M = Msc, A = ap and P = Psc, according to the convention of Klyne & Prelog (1960).

around the central H atom, which amount to 360 (3) and 359 (3)° respectively. The water molecule donates two hydrogen bonds and accepts one, thus serving as an important cohesive element in the hydrogen-bond system. This system consists of a finite chain which stops at ring O(5) and an infinite one which branches at the bifurcated donors and also at the water molecule. This system can be schematically represented (see below).



#### References

- ARNOTT, S. & SCOTT, W. E. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 324–335.
- CREMER, D. & POPLE, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321-324.
- GAYKEMA, W. P. J. & KANTERS, J. A. (1979). Acta Cryst. B35, 1156-1162.
- HAYASHIBARA, K. & SUGIMOTO, K. (1976). US patent No. 3 973 050.
- HIROTSU, K. & SHIMADA, A. (1974). Bull. Chem. Soc. Jpn, 47, 1872–1879.
- JEFFREY, G. A. & KIM, H. S. (1970). Carbohydr. Res. 14, 207-216.
- JEFFREY, G. A., POPLE, J. A., BINKLEY, J. S. & VISHVESHWARA, S. (1978). J. Am. Chem. Soc. 100, 373–379.

- JEFFREY, G. A. & TAKAGI, S. (1977). Acta Cryst. B33, 738-742.
- KANTERS, J. A., ROELOFSEN, G. & SMITS, D. (1977). Acta Cryst. B33, 3635–3640.
- KIM, H. S., JEFFREY, G. A. & ROSENSTEIN, R. D. (1971). Acta Cryst. B27, 307-314.
- KLYNE, W. & PRELOG, V. (1960). Experientia, 16, 521-523.
- LICHTENTHALER, F. W. & LINDNER, H. J. (1981). Liebigs Ann. Chem. pp. 2372–2383.
- LINDNER, H. J. & LICHTENTHALER, F. W. (1981). Carbohydr. Res. 93, 135-140.
- LONGCHAMBON, F., OHANESSIAN, J., AVENEL, D. & NEUMAN, A. (1975). Acta Cryst. B31, 2623–2627.
- MAIN, P., HULL, S., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P.
  & WOOLFSON, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- OHANESSIAN, J., AVENEL, D., NEUMAN, A. & GILLIER-PANDRAUD, H. (1980). Carbohydr. Res. 80, 1–13.
- OHNO, S., HIRAO, M. & KIDO, M. (1982). Carbohydr. Res. 108, 163–171.
- PARK, Y. J., JEFFREY, G. A. & HAMILTON, W. C. (1971). Acta Cryst. B27, 2393-2401.
- SAIJONMAA, T., HEIKONEN, M., KREULA, M. & LINKO, P. (1978). Milchwissenschaft, 33, 733–736.
- SPEK, A. L. (1982). The EUCLID Package. In Computational Crystallography, edited by D. SAYRE, p. 528. Oxford: Clarendon Press.
- STEWART, J. M., MACHIN, P. A., DICKINSON, C. W., AMMON, H. L., HECK, H. & FLACK, H. (1976). The XRAY76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- TAKAGI, S. & JEFFREY, G. A. (1977). Acta Cryst. B33, 2377–2380. VELTHUIJSEN, J. A. VAN (1979). J. Agric. Food Chem. 27, 680–686.

Acta Cryst. (1990). C46, 2411-2413

## Functionalized Hydrocarbons with Condensed Ring Skeletons. X. A Methyltricyclo[7.4.0.0<sup>2,6</sup>]tetradec-7-ene

BY MARC DROUIN,\* PIERRE SOUCY,† PIERRE DESLONGCHAMPS† AND ANDRÉ G. MICHEL\*‡

Laboratoire de chimie structurale et de modélisation moléculaire and Laboratoire de chimie organique, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1

(Received 18 December 1989; accepted 28 February 1990)

Abstract. (1) 1,9-*trans*-1,2-*cisoid*-2,6-*cis*-4,11,11-Tris(methoxycarbonyl)-6-methyltricyclo[7.4.0.0<sup>2,6</sup>]tridec-7-ene-4,2-carbolactone,  $C_{21}H_{26}O_8$ ,  $M_r =$ 406·43, monoclinic,  $P\overline{1}$ , a = 6.0774 (2), b =12·3784 (5), c = 14.2565 (4) Å,  $\alpha = 72.906$  (3),  $\beta =$ 

0108-2701/90/122411-03\$03.00

86.361 (3),  $\gamma = 78.181$  (3)°, V = 1003.38 (6) Å<sup>3</sup>,  $D_x = 1.345$  Mg m<sup>-3</sup>, Z = 2,  $\lambda$ (Cu  $K\alpha$ ) = 1.54056 Å,  $\mu = 0.82$  mm<sup>-1</sup>, F(000) = 432, room temperature, final R = 0.043 for 2841 observed reflections. The tricyclic compound (1) has the same carbon framework as in the *BCD* rings in a steriod nucleus. Ring *B* adopts a chair while ring *C* has a half-chair conformation. A *trans* relative stereochemistry is observed at the *BC* ring junction while a *cis* hydrinclane is observed for the *CD* junction, the lactone bridge being *cis* to the

© 1990 International Union of Crystallography

<sup>\*</sup> Laboratoire de chimie structurale et de modélisation moléculaire.

<sup>†</sup> Laboratoire de chimie organique.

<sup>‡</sup> To whom correspondence should be addressed.